LLaMA Timeline

The immediate impact of LLaMA.

This is taken from a leaked internal Google document on open source LLM progress.


Feb 24, 2023 - LLaMA is Launched

Meta launches LLaMA, open sourcing the code, but not the weights. At this point, LLaMA is not instruction or conversation tuned. Like many current models, it is a relatively small model (available at 7B, 13B, 33B, and 65B parameters) that has been trained for a relatively large amount of time, and is therefore quite capable relative to its size.

March 3, 2023 - The Inevitable Happens

Within a week, LLaMA is leaked to the public. The impact on the community cannot be overstated. Existing licenses prevent it from being used for commercial purposes, but suddenly anyone is able to experiment. From this point forward, innovations come hard and fast.

March 12, 2023 - Language models on a Toaster

A little over a week later, Artem Andreenko gets the model working on a Raspberry Pi. At this point the model runs too slowly to be practical because the weights must be paged in and out of memory. Nonetheless, this sets the stage for an onslaught of minification efforts.

March 13, 2023 - Fine Tuning on a Laptop

The next day, Stanford releases Alpaca, which adds instruction tuning to LLaMA. More important than the actual weights, however, was Eric Wang’s alpaca-lora repo, which used low rank fine-tuning to do this training “within hours on a single RTX 4090”.

Suddenly, anyone could fine-tune the model to do anything, kicking off a race to the bottom on low-budget fine-tuning projects. Papers proudly describe their total spend of a few hundred dollars. What’s more, the low rank updates can be distributed easily and separately from the original weights, making them independent of the original license from Meta. Anyone can share and apply them.

March 18, 2023 - Now It’s Fast

Georgi Gerganov uses 4 bit quantization to run LLaMA on a MacBook CPU. It is the first “no GPU” solution that is fast enough to be practical.

March 19, 2023 - A 13B model achieves “parity” with Bard

The next day, a cross-university collaboration releases Vicuna, and uses GPT-4-powered eval to provide qualitative comparisons of model outputs. While the evaluation method is suspect, the model is materially better than earlier variants. Training Cost: $300.

Notably, they were able to use data from ChatGPT while circumventing restrictions on its API - They simply sampled examples of “impressive” ChatGPT dialogue posted on sites like ShareGPT.

March 25, 2023 - Choose Your Own Model

Nomic creates GPT4All, which is both a model and, more importantly, an ecosystem. For the first time, we see models (including Vicuna) being gathered together in one place. Training Cost: $100.

March 28, 2023 - Open Source GPT-3

Cerebras (not to be confused with our own Cerebra) trains the GPT-3 architecture using the optimal compute schedule implied by Chinchilla, and the optimal scaling implied by μ-parameterization. This outperforms existing GPT-3 clones by a wide margin, and represents the first confirmed use of μ-parameterization “in the wild”. These models are trained from scratch, meaning the community is no longer dependent on LLaMA.

March 28, 2023 - Multimodal Training in One Hour

Using a novel Parameter Efficient Fine Tuning (PEFT) technique, LLaMA-Adapter introduces instruction tuning and multimodality in one hour of training. Impressively, they do so with just 1.2M learnable parameters. The model achieves a new SOTA on multimodal ScienceQA.

April 3, 2023 - Real Humans Can’t Tell the Difference Between a 13B Open Model and ChatGPT

Berkeley launches Koala, a dialogue model trained entirely using freely available data.

They take the crucial step of measuring real human preferences between their model and ChatGPT. While ChatGPT still holds a slight edge, more than 50% of the time users either prefer Koala or have no preference. Training Cost: $100.

April 15, 2023 - Open Source RLHF at ChatGPT Levels

Open Assistant launches a model and, more importantly, a dataset for Alignment via RLHF. Their model is close (48.3% vs. 51.7%) to ChatGPT in terms of human preference. In addition to LLaMA, they show that this dataset can be applied to Pythia-12B, giving people the option to use a fully open stack to run the model. Moreover, because the dataset is publicly available, it takes RLHF from unachievable to cheap and easy for small experimenters.